ФИЗИОЛОГИЯ РАСТЕНИЙ

Том 38, вып. 6
1991 г.

УДК 581.1
© 1991 г.

Г.Л. КЛЯЧКО-ГУРВИЧ, В.Г. ЛАДЫГИН*, Н.А. ПРОНИНА,
И.Б. РЯБЫХ, В.Е. СЕМЕНЕНКО

СПЕЦИФИЧНОСТЬ СОСТАВА ЖИРНЫХ КИСЛОТ ЛИПИДОВ
У МУТАНТОВ CHLAMYDOMONAS REINHARDTII С РАЗЛИЧНОЙ
ОРГАНИЗАЦИЕЙ ФОСОСИСТЕМ ХЛОРОПЛАСТОВ

Институт физиологии растений им. К.А. Тимирязева
Академии наук СССР, Москва
*Институт почвоведения и фотосинтеза Академии наук СССР,
Пущино

Исследовали состав и содержание жирных кислот липидов у мутантов Chlamydomonas reinhardtii с различными наборами хлорофилл-белковых комплексов (ХБК). На основании полученных данных видно, что общей особенностью различных мутантов, содержащих только отдельные ХБК и способных осуществлять только частные реакции фотосинтеза, является снижение относительной и абсолютной концентрации жирных кислот липидов, специфически приуроченных и характерных для активно функционирующего хлороплазта — транс-3-гексадекеновой (тг-16:1н13), α-линоленовой (18:3н3) и гексадекатраеновой (16:4н3). Это особенно сильно проявляется у мутантов, утративших фотосистемы и сохранивших только отдельные светособирающие комплексы (ССК). Мутанты, сохранившие фотосистемы, существенно различаются по составу жировых кислот. Мутант ACC-14, содержащий только ХБК ФС I, практически не образует тг-16:1н13 и отличается высокой концентрацией 18:3н3 и 16:4н3. При утрате ФС II, оставшиеся ССК I или ССК II, синтез полиенов оценивают в значительном количестве тг-16:1н13. Полученные данные согласуются с существующей гипотезой о приуроченности тг-16:1н13 к ССК II и позволяют предположить, что в ходе биссинтеза жировых кислот процесс последовательного дегидрирования может протекать за счет циклического транспорта электронов ФС I.

Chlamydomonas reinhardtii — мутанты — хлорофилл-белковые комплексы — жирные кислоты липидов

Общепризнано, что липиды выполняют роль гидрофобного матрикса любых мембран, в том числе и мембран тилакоидов, определяя их «жидкость»; проницаемость и активность встроенных в них ферментов и ХБК. Однако в исследовании последних лет постепенно накапливаются данные о роли отдельных классов липидов и входящих в них жирных кислот в структурно-функциональной организации определенных компонентов фотосинтетических мембран [1—3]. На основании этих данных выдвинута гипотеза об участии тг-16:1н13 в составе фосфатидилглицеринов в стабилизации олигомерной структуры ХБК ФС I, высказаны предположения о роли МГДГ с полиеновыми жирными кислотами в организации комплексов ближайшего окружения реакционных центров ФС I. В то же время есть указания на локализацию таких молекул в участках высокой кривизны тилакоидов гран хлороплазта, показана связь сультфолипидов с интегральными белками АТФ [4—6]. Дальнейшее развитие исследо-

ванный по локализации липидов в тилакоидах затруднено из-за отсутствия адекватных методов, дающих однозначные результаты, а также многофункциональные роли отдельных липидов [1, 2].

Один из перспективных подходов для изучения роли липидов хлоропласта — использование мутантов высших растений и водорослей с различными нарушениями структуры фотохимической аппаратуры или биосинтеза липидов [7—10]. Этот метод также не лишен недостатков, прежде всего заключающихся в том, что при наличии репликативной корреляции между фотосинтезом и объемом липидов организм утрачивает способность осуществлять полноценный фотосинтез, что не может не отразиться на составе липидов [3]. Сравнительная оценка широкого набора мутантов, сохранивших различные ХБК и способных к осуществлению различных частных реакций фотосинтеза, может в некоторой степени компенсировать этот недостаток.

В данной работе для изучения роли липидов в хлоропласте использовали набор мутантов Chl. reinhardtii с различными нарушениями организации ХБК, сохранивших в нативном состоянии только один из основных ХБК или их комбинацию [11]. Спектральные характеристики этих мутантов, их ультраструктура, отчасти функциональная активность и состав липидов изучены ранее [8, 11—13].

МЕТОДИКА

В качестве объектов исследования использовали клетки дикого типа Chlamydomonas reinhardtii (К — контроль) и мутанты, полученные методом ступенчатого экспериментального мутагенеза в ИПФС АН СССР [14]. Этот метод позволил получить мутанты не только с различной комбинацией основных пигмент-белковых комплексов, но и тройные мутанты, содержащие по одному из комплексов в нативном состоянии [13]. В работе использовали мутанты, сохранявшие комплексы только ФС I, или ФС II, а также ССК I или ССК II, и мутанты, содержащие обе фотосистемы без ССК или только ССК без обоих фотосистем (рис. 1). Водоросли культивировали в чашках Петри на агаризованной среде при температуре 23° и освещенности 4 Вт·м−2. В этих условиях насыщающим был световой поток 6 Вт·м−2 [14].

Для проведения анализа клетки водорослей переводили в фосфатный буфер рН 6.8, замораживали в жидкем азоте и хранили при −70°. Для исследования липидов аликвотную часть пробы фиксировали кипячим метанолом и последовательно экстрагировали 2—3 раза смесью хлороформ — метанол (1:1). Объединенный экстракт высушивали под вакуумом и липиды рекстрагировали хлороформом. Метиловые эфиры жирных кислот получали путем прямого метанолиза с использованием смеси метанол-хлористый ацетил (5 %). Анализ метиловых эфиров жирных кислот проводили методом ГЖХ на хроматографе Chrom-5, снабжен-
ном интегратором CI-100 ("Laboratori pristroje", ЧСФР). Температура 185°, газ-носитель — азот. В качестве жидкой фазы использовали 5% -ный ПЭГА на целите 545.

Опыты проводили в 2 — 3 биологических повторностях, определение биохимических параметров — в четырех — шести аналитических повторностях. В таблицах и на рисунках приведены данные характерного опыта.

Результаты

Ранее были получены характеристики исследованных штаммов микроводорослей по общему содержанию белка, пигментов и жирных кислот липидов (15), табл. 1. Было показано, что у мутантов снижается содержание всех исследованных компонентов, изменяется соотношение белок: Хл: жирные кислоты.

Для Chl. reinhardtii характерно большее разнообразие жирных кислот C-16 и C-18 рядов с числом двойных связей, достигающих 4, и наличием изомеров, различающихся их положением [9, 16, 17]. Данные по составу жирных кислот исходного штамма Chl. reinhardtii, полученные в настоящей работе, соответствуют данным в литературе (табл. 1). В связи с тем, что мутанты, использованные в работе, не способны осуществлять фотосинтез, в качестве контроля служили клетки дикого штамма Chl. reinhardtii, также, культивируемые на среде с добавкой ацетата. Показано, что клетки Chl. reinhardtii способны формировать нормальные хлоропластиды даже в темноте при гетеротрофном питании [7]. В то же время в разных опытах могут наблюдаться существенные различия в составе жирных кислот исходного штамма (табл. 1).

Сравнительная оценка состава жирных кислот у набора мутантов хламидомо-

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>16:0</td>
<td>52,84</td>
<td>45,55</td>
<td>26,9</td>
<td>15,3</td>
</tr>
<tr>
<td>16:1*</td>
<td>3,67</td>
<td>6,54</td>
<td>2,4</td>
<td>10,2</td>
</tr>
<tr>
<td>tr-16:1n13</td>
<td>0,96</td>
<td>1,00</td>
<td>2,5</td>
<td>10,2</td>
</tr>
<tr>
<td>16:2*</td>
<td>0,45</td>
<td>1,07</td>
<td>2,4</td>
<td>10,2</td>
</tr>
<tr>
<td>16:3n6</td>
<td>0,74</td>
<td>1,35</td>
<td>5,3</td>
<td>10,2</td>
</tr>
<tr>
<td>16:3n3</td>
<td>Сл.</td>
<td>0,14</td>
<td>5,3</td>
<td>10,2</td>
</tr>
<tr>
<td>16:4n3</td>
<td>9,04</td>
<td>3,67</td>
<td>21,1</td>
<td>18,0</td>
</tr>
<tr>
<td>18:0</td>
<td>1,66</td>
<td>1,96</td>
<td>4,8</td>
<td>14,5</td>
</tr>
<tr>
<td>18:1*</td>
<td>5,75</td>
<td>18,65</td>
<td>10,5</td>
<td>14,5</td>
</tr>
<tr>
<td>18:2n6</td>
<td>1,88</td>
<td>5,40</td>
<td>8,7</td>
<td>14,5</td>
</tr>
<tr>
<td>18:3n6</td>
<td>7,17</td>
<td>6,35</td>
<td>26,50</td>
<td>23,2</td>
</tr>
<tr>
<td>18:3n3</td>
<td>15,17</td>
<td>8,38</td>
<td>22,4</td>
<td>18,5</td>
</tr>
<tr>
<td>18:4*</td>
<td>Сл.</td>
<td>0,62</td>
<td>Сл.</td>
<td>—</td>
</tr>
</tbody>
</table>

*Положение двойной связи не установлено.
**Представлены данные по составу жирных кислот отдельных классов липидов. В таблице приведены расчетные данные.
<table>
<thead>
<tr>
<th>Жирная кислота</th>
<th>Дикий штамм (K3)</th>
<th>Мутант</th>
<th>CC-107</th>
<th>ACC-14</th>
<th>ACC-66</th>
<th>БФ-5</th>
<th>A-66-90-1</th>
<th>БФ-5-16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>ФС I + ФС II</td>
<td>ФС I</td>
<td>ФС II</td>
<td>ССК I + ССК II</td>
<td>ССК I</td>
<td>ССК II</td>
</tr>
<tr>
<td>16:0</td>
<td>39,26</td>
<td>33,26</td>
<td>38,84</td>
<td>34,05</td>
<td>25,89</td>
<td>50,83</td>
<td>41,08</td>
<td></td>
</tr>
<tr>
<td>16:1*</td>
<td>6,14</td>
<td>1,19</td>
<td>3,19</td>
<td>5,07</td>
<td>1,47</td>
<td>2,40</td>
<td>6,97</td>
<td></td>
</tr>
<tr>
<td>tr-16:13n13</td>
<td>1,77</td>
<td>1,54</td>
<td>0,10</td>
<td>1,06</td>
<td>0,93</td>
<td>0,83</td>
<td>0,60</td>
<td></td>
</tr>
<tr>
<td>16:2*</td>
<td>0,40</td>
<td>0,36</td>
<td>0,38</td>
<td>Сл.</td>
<td>0,16</td>
<td>Сл.</td>
<td>0,67</td>
<td></td>
</tr>
<tr>
<td>16:3n6</td>
<td>0,78</td>
<td>0,68</td>
<td>0,75</td>
<td>Сл.</td>
<td>0,72</td>
<td>0,29</td>
<td>0,47</td>
<td></td>
</tr>
<tr>
<td>16:3n3</td>
<td>0,53</td>
<td>0,28</td>
<td>Сл.</td>
<td>0,42</td>
<td>0,53</td>
<td>Сл.</td>
<td>Сл.</td>
<td></td>
</tr>
<tr>
<td>16:4n3</td>
<td>11,15</td>
<td>15,59</td>
<td>10,49</td>
<td>7,57</td>
<td>20,60</td>
<td>3,40</td>
<td>3,58</td>
<td></td>
</tr>
<tr>
<td>18:0</td>
<td>1,64</td>
<td>1,76</td>
<td>2,13</td>
<td>2,41</td>
<td>1,49</td>
<td>4,60</td>
<td>3,12</td>
<td></td>
</tr>
<tr>
<td>18:1*</td>
<td>11,64</td>
<td>6,28</td>
<td>7,26</td>
<td>14,78</td>
<td>5,80</td>
<td>15,62</td>
<td>11,30</td>
<td></td>
</tr>
<tr>
<td>18:2n6</td>
<td>3,02</td>
<td>2,47</td>
<td>3,83</td>
<td>4,21</td>
<td>0,34</td>
<td>2,69</td>
<td>2,09</td>
<td></td>
</tr>
<tr>
<td>18:3n6</td>
<td>6,37</td>
<td>6,86</td>
<td>7,07</td>
<td>14,42</td>
<td>6,45</td>
<td>10,95</td>
<td>17,16</td>
<td></td>
</tr>
<tr>
<td>18:3n3</td>
<td>16,65</td>
<td>26,76</td>
<td>24,76</td>
<td>13,68</td>
<td>31,31</td>
<td>7,05</td>
<td>10,88</td>
<td></td>
</tr>
<tr>
<td>18:4*</td>
<td>0,68</td>
<td>3,19</td>
<td>0,55</td>
<td>2,27</td>
<td>2,67</td>
<td>1,34</td>
<td>2,01</td>
<td></td>
</tr>
</tbody>
</table>

*Положение двойной связи не установлено.

Таблица 3

Содержание превышающих жирных кислот липидов у тройных мутантов Chlamydomonas reinhardtii, имеющих по одному пигмент-белковому комплексу (мг·100 мг⁻¹ белка)

<table>
<thead>
<tr>
<th>Жирная кислота</th>
<th>±**</th>
<th>II</th>
<th>I</th>
<th>I</th>
<th>II</th>
<th>I</th>
<th>II</th>
<th>I</th>
<th>II</th>
</tr>
</thead>
<tbody>
<tr>
<td>16:0</td>
<td>11,64</td>
<td>13,05</td>
<td>36,33</td>
<td>10,85</td>
<td>12,11</td>
<td>5,60</td>
<td>12,38</td>
<td>9,77</td>
<td>10,95</td>
</tr>
<tr>
<td>tr-16:13n13</td>
<td>0,21</td>
<td>0,59</td>
<td>0,10</td>
<td>0,03</td>
<td>0,08</td>
<td>0,17</td>
<td>0,05</td>
<td>0,16</td>
<td>0,06</td>
</tr>
<tr>
<td>16:4n3</td>
<td>2,05</td>
<td>3,59</td>
<td>0,61</td>
<td>2,84</td>
<td>0,15</td>
<td>1,21</td>
<td>0,18</td>
<td>0,63</td>
<td>0,34</td>
</tr>
<tr>
<td>18:1*</td>
<td>1,32</td>
<td>4,08</td>
<td>3,10</td>
<td>2,23</td>
<td>1,91</td>
<td>2,68</td>
<td>1,30</td>
<td>3,31</td>
<td>1,47</td>
</tr>
<tr>
<td>18:2n6</td>
<td>0,39</td>
<td>1,10</td>
<td>0,76</td>
<td>1,17</td>
<td>0,52</td>
<td>0,76</td>
<td>0,23</td>
<td>0,57</td>
<td>0,29</td>
</tr>
<tr>
<td>18:3n6</td>
<td>1,50</td>
<td>2,30</td>
<td>5,11</td>
<td>2,15</td>
<td>2,87</td>
<td>2,57</td>
<td>2,63</td>
<td>2,29</td>
<td>2,56</td>
</tr>
<tr>
<td>18:3n3</td>
<td>3,62</td>
<td>6,01</td>
<td>3,70</td>
<td>7,51</td>
<td>1,35</td>
<td>2,44</td>
<td>1,07</td>
<td>1,47</td>
<td>1,01</td>
</tr>
<tr>
<td>Сумма кислот</td>
<td>21,14</td>
<td>34,15</td>
<td>51,73</td>
<td>28,78</td>
<td>20,38</td>
<td>17,17</td>
<td>19,16</td>
<td>19,97</td>
<td>17,74</td>
</tr>
</tbody>
</table>

*Положение двойной связи не установлено.
**I, II — номера опытов.

нады, содержащих различные компоненты фотосинтетического аппарата, показа-ла, что при наличии обоих ССК (CCС I + ССК II) или комплексов обоих фотосистем (ФС I + ФС II) водоросли характеризуются относительно высоким содержанием полиненасыщенных жирных кислот (табл. 2). При наличии только ФС I содержание этих кислот также относительно высокое, но резко понижена концентрация tr-16:13n13. В то же время мутанты, содержащие только ФС II или один из ССК, отличались сравнительно высокой концентрацией этой кислоты, хотя и более низкой, чем у дикого штамма, и пониженным содержанием полиненасыщенных кислот (табл. 2).

Для оценки действительного содержания жирных кислот липидов в клетках необходимо правильно выбрать базу для расчета. Это затруднено тем, что у раз-ных мутантов в разной степени изменены общий объем фракции хлоропластных мембран, содержание белка и Хл, скорость накопления биомассы [11—13, 15]. При
Рис. 2. Содержание преобладающих жирных кислот липидов у мутантов Chlamydomonas reinhardtii с различным составом XБK
A — сумма жирных кислот липидов; B — 16:3n13; C — 16:4n3; D — 18:3n3; E — K+; F — ФС I + ФС II; G — ФС III; H — ССК I + ССК II; I — ССК I; J — ССK II

Рис. 3. Содержание жирных кислот в расчете на единицу белка у мутантов Chlamydomonas reinhardtii, сохранивших ФС I или ФС II в процентах от этой величины у мутанта, сохранившего обе фотосистемы
I — СС-107 (ФС I + ФС II); J — ACC-14 (ФС I); K — ACC-66 (ФС II); L — 16:1 — tr-16:1n13; M — 16:4 — 16:4n3; N — 18:2 — 18:2n6; O — 18:3 — 18:3n3

Расчете на единицу Хл у мутантов наблюдали повышение концентрации жирных кислот, тем в большей степени, чем сильнее подавлен синтез Хл [8]. При расчете на единицу белка в большинстве случаев наблюдали некоторое снижение общего содержания липидов (табл. 3), что может быть связано не только с изменением их биосинтеза, но и с возможным относительным обогащением мембран хлоропластов белком [11]. При этом содержание 16:0, 18:1, 18:2n6 и 18:3n6 практически не уменьшалось, или даже повышалось, но резко падала концентрация в расчете на единицу белка жирных кислот, характерных для хлоропластов. Это особенно проявлялось у мутантов, утративших комплексы фотосистем (табл. 3, рис. 2), хотя у мутанта ВФ-5, полностью сохранившего при этом ССК, содержание жирных кислот, в том числе и полиненасыщенных п3 ряда, было выше, чем в контрольных клетках. У мутантов, лишенных ССК, наблюдали значительные различия в составе и содержании жирных кислот в соответствии с природой сохранившихся XБK фотосистем. При полной сохранности фотосистем (мутант СС-107) содержание жирных кислот практически не изменялось, а 16:4n3 и 18:3n3 было даже больше.
чем у дикого штамма. По сравнению с этим мутантом у водорослей штамма АСС-14, сохранивших только ФС I, несколько снижалось количество полиненасыщенных кислот, особенно 16:4n3, и практически не образовывалась tr-16:1n13. У мутанта АСС-66 с ФС II сохранялось значительное количество именно этой кислоты, но очень резко уменьшалось содержание 18:3n3 и 16:4n3 (рис. 3).

ОБСУЖДЕНИЕ

Как уже отмечалось выше, в настоящее время есть данные, позволяющие считать, что определенные липиды играют специфическую роль в структурно-функциональной организации мембран хлоропластов. Для многих объектов показана тесная реципрокно-коррелятивная зависимость между структурой и активностью фотосинтетического аппарата и содержанием 18:3n3 и tr-16:1n13 [1—3, 5]. Еще одной, специфичной для хлоропластов ряда водорослей кислотой, является 16:4n3, локализованная почти исключительно в одном из классов липидов, характерных для тилакоидных мембран — МГДГ [17, 18]. Отсутствие данных об этой кислоте в работе Мануильской с соавт. [8], выполненной также на мутантах хламидомонады, очевидно, связано с недостаточной степенью разрешения при использовании метода ГЖХ для определения жирных кислот.

На основании полученных данных можно видеть, что общей особенностью разнообразных мутантов, содержащих только отдельные ХВК и не способных осуществлять полноценный фотосинтез, является снижение относительной и абсолютной концентрации жирных кислот липидов, специфически приуроченных и характерных для активно функционирующего хлороплазста — tr-16:1n13, 18:3n3 и 16:4n3 (табл. 2, 3; рис. 2). Это снижение концентрации наиболее существенных для хлороплазста жирных кислот, связанное с функциональным состоянием хлороплазста, затрудняет интерпретацию полученных данных в плане решения вопроса о специфической роли липидов. Тем не менее сопоставление различных мутантов позволяет сделать некоторые заключения, прежде всего относительно приуроченности и роли tr-16:1n13.

Мутанты, использованные в данной работе, в разной степени сохранили способность осуществлять фотосинтез (CC-107) или частные его реакции при наличии одной из фотосистем [12, 13, 19]. Для ФС I это циклическое фотоfosфорилирование, выделение водорода в vitro, а для ФС II — сохранение потенциальной способности окисления воды, выделения кислорода и работы реакционного центра, пула пластохинонов и даже в незначительной степени способности переноса электронов на НАДФ [19].

Как отмечалось выше, во многих работах показана роль tr-16:1n13 как стабилизатора олигомерной структуры светосодержащего Хл a/b белкового комплекса [10, 20]. Однако есть данные, что при отсутствии этого липида организм может найти обходные пути и фотосинтез будет осуществляться [21]. Ранее отмечали как наличие этой кислоты у мутантов с подавленным синтезом Хл b [8, 10], так и ее отсутствие у мутантов, содержащих только мономерные, но не олигомерные формы светосодержащего Хл a/b белкового комплекса [9]. Несмотря на подобное появление образования tr-16:1n13 у всех мутантов, не способных осуществлять фотосинтез, видно, что у мутанта, сохранившего только ФС I, концентрация этой кислоты снижается в большей степени, чем у остальных штаммов (рис. 2 и 3). При этом у мутантов с ФС I, CСК I и CСК I + CСК II наблюдается корреляция между содержанием tr-16:1n13 и Хл b их соотношение не меняется. У ряда других мутантов образование этой кислоты подавлено в значительно меньшей степени, чем Хл b (табл. 4). Это согласуется с существующей гипотезой о приуроченности рассматриваемой кислоты к CСК I [5, 10] и в то же время об отсутствии прямой корреляции между синтезом tr-16:1n13 и Хл b.

Уже отмечалась тесная реципрокно-коррелятивная зависимость, установленная между содержанием 18:3n3 кислоты и функциональной активностью фо-
Таблица 4

<table>
<thead>
<tr>
<th>Мутант</th>
<th>tr-16:1n13</th>
<th>Хл b</th>
<th>Xla / Xlb</th>
<th>16,1 / Хл b</th>
<th>16,1 / 16,4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>мкг-мг⁻¹ белка</td>
<td>% от контроля</td>
<td>мкг-мг⁻¹ белка</td>
<td>% от контроля</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>5,9</td>
<td>100</td>
<td>42,5</td>
<td>100</td>
<td>1,35</td>
</tr>
<tr>
<td>ФС I + ФС II</td>
<td>5,3</td>
<td>90,6</td>
<td>13,1</td>
<td>30,8</td>
<td>3,80</td>
</tr>
<tr>
<td>ФС I</td>
<td>0,3</td>
<td>5,2</td>
<td>2,7</td>
<td>6,4</td>
<td>4,82</td>
</tr>
<tr>
<td>ФС II</td>
<td>1,7</td>
<td>29,0</td>
<td>3,0</td>
<td>7,0</td>
<td>1,57</td>
</tr>
<tr>
<td>ССК I + ССК II</td>
<td>4,9</td>
<td>83,8</td>
<td>70,7</td>
<td>166,0</td>
<td>1,38</td>
</tr>
<tr>
<td>ССК I</td>
<td>1,6</td>
<td>27,4</td>
<td>0,4</td>
<td>1,0</td>
<td>1,03</td>
</tr>
<tr>
<td>ССК II</td>
<td>0,8</td>
<td>13,6</td>
<td>7,5</td>
<td>17,6</td>
<td>1,12</td>
</tr>
</tbody>
</table>

Примечание: В клетках мутантов снижается не только концентрация Хл и жирных кислот липидов, но и концентрация белка (в 2—10 раз) [115], табл. 1. В результате в мутантах (за исключением мутанта, сохранившего оба ССК) Хл содержится в очень небольших количествах.

...сintéтического аппарата [3, 22, 23]. Подобную корреляцию мы наблюдали при сопоставлении содержания 18:3n3 с потенциальной способностью отдельных мутантов осуществлять фотосintéтические реакции (табл. 2, рис. 2). Ещё более отчётливую корреляцию с функциональными возможностями хлоропластов наблюдали для 16:4n3, ранее практически не изученной в этом отношении. Очевидно, это может быть связано с локализацией этой кислоты практически полностью в МГДГ тилакоидных мембран, в то время как 18:3n3 входит в состав липидов не только хлоропластов. В настоящее время показана множественность путей биосинтеза 18:3n3 кислоты. Одним из основных для хлоропластов — последовательное дегидрирование жирных кислот, происходящее в самом хлоропласте с использованием в качестве субстрата реакции жирных кислот, связанных с МГДГ («прокариотный» путь). В другом случае процесс дегидрирования или отдельные его этапы могут происходить в эндоплазматическом ретикулуме с использованием фосфатидилхолина («эукариотный» путь) [22, 23].

В любом случае дегидрирование осуществляется в сложной системе сопряженных реакций и требует наличия НАДФН₂, восстановленного ферредоксина, кислорода и источника энергии [22, 23]. С фотосинтезом тесно связаны не только дегидрирование жирных кислот, но и процесс биосинтеза жирных кислот de novo. Эти процессы осуществляются разными ферментными системами и могут быть в какой-то степени разобщены, следовательно, исключение отдельных компонентов фотосинтетического аппарата может по-разному отразиться на них. Последнее проявляется в отсутствии прямой корреляции между изменением общего содержания жирных кислот и содержением 18:3n3 как конечного продукта в цепи последовательных реакций дегидрирования у мутантов с разным набором ХБК (рис. 2, табл. 2).

Для мутанта СС-107, способного осуществлять фотосинтез [12, 19], характерно интенсивное образование жирных кислот, при этом содержание 18:3n3 и 16:4n3 даже выше, чем у дикого штамма (табл. 2, рис. 2). Это может определяться тем, что, несмотря на некоторое подавление синтеза жирных кислот, процесс дегидрирования не нарушен и образование полиненасыщенных жирных кислот частично происходит за счет предшествующих кислот с меньшей степенью ненасыщенности [4]. Подобный процесс наблюдался у молодых клеток хлореллы на стадии, когда при формировании хлоропласта образование фотосистем происходит раньше, чем ССК [24], t.e. при структуре хлоропласта, близкой к мутанту СС-107.

Высокая концентрация полиненасыщенных жирных кислот у мутанта ACC-14, сохранившего только ФС I, и сильное снижение их концентрации у мутанта ACC-66, сохранившего только ФС II, позволяет думать, что процесс дегидрирова-
ния жирных кислот в большей степени связан с работой ФС I. Сравнительно высо-
кое содержание полиненасыщенных жирных кислот наблюдал в ранее у мутан-
тов хламидомонады, утративших ФС II [9]. Это согласуется с выказанным в своё
время предположением, что быстрые светозависимые изменения степени нена-
сыщенности жирных кислот затрагивают прежде всего пул кислот МГДГ, входя-
щих в ближайшее окружение реакционного центра ФС I [4]. Относительно высокое
общее содержание липидов у мутанта с ФС I согласуется с данными о более вы-
сокой концентрации липидов во фракции межгранальных тилакоидов, обогащен-

У мутантов, сохранявших только ССК I или ССК II, содержание полинена-
сыщенных кислот резко снижено (табл. 2, рис. 2), что подтверждает необходимость работы фотосинтетического аппарата для осуществления процесса дегидрирования жирных кислот липидов хлоропластов. Однако с этих позиций трудно объяснить большое содержание липидов и высокую концентрацию полиненасы-
щенных жирных кислот у мутанта БФ-5, содержащего полный набор ССК, но лишенного фотосистемы. В данном случае не исключена возможность изменения путей биосинтеза этих кислот, что наблюдается при некоторых типах мутаций [25, 26]. Представляет интерес и тот факт, что Мануйльская с соавт. [8] у этого же мутанта с полным набором ССК, но без фотосистемы также обнаружили значи-
тельное количество 18:3н3.

Таким образом, при анализе жирных кислот липидов у мутантов Chl. reinhardtii,
сохранивших только отдельные ХБК, утраты способности к фотосинтезу коррелирует с уменьшением содержания жирных кислот, характерных для функционально активного фотосинтетического аппарата. При этом специфичность распределения липидов в хлоропласте проявляется в том, что образование tr-16:1н13 в наименьшей степени блокировано у мутанта ACC-14, утратившего ФС II и сохранявшего ФС I. В случае утраты ФС II при наличии только ФС I интен-
sивно идет процесс дегидрирования жирных кислот. Это позволяет предполо-
жить, что для осуществления процесса дегидрирования жирных кислот могут быть использованы восстановленный ферредоксин и АТФ, образующиеся в ходе циклического фотосинтеза, по крайней мере при использовании "прокариотного" пути биосинтеза полиненасыщенных жирных кислот. Однако следует иметь в виду, что энергетика клетки в данных опытах обеспечивалась за счет фотогетеротрофного процесса с использованием наряду с CO2 ацетата натрия как источника углерода.

СПИСОК ЛИТЕРАТУРЫ

1. Murphy D.I., Woodrow J.E. The lateral segregation model. A new paradigm for the dynamic role of acyl
lipids in the molecular organization of photosynthetic membranes // Biosynthesis and function of plant
2. Quinn P.J., Williams W.P. Lipid structures and the organization of photosynthetic membranes //
3. Horvath G., Droppa M., Szito T. et al. Homogeneous catalytic hydrogenation of lipids in the
photosynthetic membrane structure and photosynthetic activity // Biochim. et biophys. acta. 1986.
4. Клячко-Гуревич Г.Л., Доглин Л.Н., Семенова А.Н. К вопросу об участии мембран тилакоидов в
Зеленых (МГДГ) с различным составом жирных кислот в организации мембран хлоропластов //
5. Dubacq J.P., Tremolieres A. Occurence and function of phosphatidyglycerol containing 16-3-trans-
7. Somerville C.R. Analysis of photosynthesis with mutants of higher plants and algae // Ann. rev. plant
8. Мануйльская С.В., Ладыгин В.Г., Михно А.И., Ширшкова Г.Н. Липидный состав мембран
хлоропластов у мутантов Chlamydomonas reinhardtii, лишенных фотосистем или светособирающего

Представлено Ю.Г. Молотковским

Поступила в редакцию

23. V. 1990
Fatty acid composition and content have been studied in lipids of Chlamydomonas reinhardtii mutants with different composition of chlorophyll-protein complexes (CPC). The data obtained showed that the decrease in relative and absolute concentrations of trans-3-hexadecenoic (tr-16:1n13), α-linolenic (18:3n3), and hexadecatetraenoic (16:4n3) fatty acids characteristic of the actively functioning chloroplast is a common feature in different mutants containing only one individual CPC and performing some partial reactions of photosynthesis. That is especially distinctive in mutants lacking photosystems (PS) and retaining some light-harvesting complexes (LHC). Mutants retaining photosystems varied greatly in fatty acid composition. Mutant ACC-14 containing only PS I CPC do not practically produce tr-16:1n13 and has high concentrations of 18:3n3 and 16:4n3. If PS I is lost (in the presence of PS II, LHC I or LHC II), the synthesis of polyunsaturated acids is strongly depressed but a significant amount of tr-16:1n13 is produced. The data obtained are in agreement with a hypothesis on a confinement of tr-16:1n13 to LHC II and suggest that the sequential dehydrogenation occurring in fatty acid biosynthesis may proceed via the cyclic transport of PS I electrons.